Hydraulic Fracturing: Experiences with Clinical Evaluation

http://www.parrotkeyresort.com/photos

Dr. Michael Gary Abesamis, MD UPMC Department of Emergency Medicine Division of Medical Toxicology - Out-patient Clinic Director University of Pittsburgh School of Medicine ACMT Medical Toxicology Clinic Network Chair West Virginia Poison Center Medical Director

Disclosures

I have no conflicts of interest to disclose.

All my opinions are my own based on my experience and interpretation of the available scientific and my own clinical data.

What is a medical toxicologist?

Specialized training in:

- Medication Overdose
- Medication Adverse Effects
- Medication Interaction
- Ø Bites, Stings, and Envenomations
- Environmental and Occupational Exposures

Outline

Objectives
Case example
The Toxicology of hydraulic fracturing
Water Concerns
Air Concerns

Objectives

- To understand the possible sources of toxicologic exposures from hydraulic fracturing.
- To review the common chemicals that are used in the UOGD
- Things that are evaluated

Case

- 67 year-old woman presents with complaints of diffuse pain, muscle weakness, dry red skin, and increasing difficulty with ambulation over the last 3-4 years.
- PMH: Diabetes, Hyperlipidemia, Hypertension, GERD, lumbar radiculopathy.
- Referred to you for an abnormal blood barium level of 150mcg/I and worsening symptoms since hydraulic fracturing began near her home.
- She underwent a blood barium test after a public hearing discussed possible barium contamination in ground water as a result of hydraulic fracturing.
- The patient states her "drinking water becomes cloudy" during periods of active "fracking."

Case Con't

- Water testing showed elevated sodium and barium levels.
 - Did not show any benzene, toluene, or ethylene glycol.
 - There were no other significant levels of contamination noted.
- Air testing did not show any specific levels above the normal reporting range.
- BMP, CBC, LFTs within normal limits.
- MRI of lumbar spine was unchanged from similar MRI 6 years earlier.

Physical Exam

- Only notable for mild non-pitting, bilateral lower extremity edema, seborrheic keratosis to back and chest wall, diffuse melanotic spotting and chronic skin changes consistent with aging.
- The patient's scalp and upper extremities did show scaling diffusely consistent with dry skin, but no erythema, induration, or raised areas.
- Neurologic exam was unremarkable with 5/5 strength to all extremities, normal reflexes, and no focal deficits.

What I've found so far

- Very non-specific findings
- Most cases that come to me are from populations at risk
 - Multiple medical problems
 - Aged
 - Children
- Most of my high correlated cases come with mucous membrane irritation

Toxicology of Hydraulic Fracturing

#1

Water Toxicity Issues

#2

Air Toxicity Issues

Toxicology of Hydraulic Fracturing

#1

Water Toxicity Issues

#2 Air Toxicity Issues

Possible Water Contamination

Hydraulic fracturing

- Only approx 9-53% of fluid reclaimed
- Migration of fluid to aquifer
- Methane migration from drilling/fracturing
- Tailings Ponds

Casing failure

- Methane contamination from drilling migration
- Fracturing fluid migration to aquifer

Backflow water

- Contains metals, salts, organics, radioactivity
- Spills/run off most common cause of contamination (Metzger 2011)
- Improper disposal of backflow water

Compound	Purpose	Common Use	
Glutaraldehyde	Bactericide	Disinfectant	
Sodium/Potassium Chloride	Delays gel polymer breakdown	Table salt	
Ammonium bisulfate	Prevents pipe corrosion	Water treatment	
N, N-Dimethyl formamide	Prevents pipe corrosion	Plastics, pharmaceuticals	
Petroleum distillates	Minimizes friction/"slicks" water	Make up, laxatives	
Ethylene glycol	Prevents deposits on pipe	Radiator Fluid	
Isopropanol	Increases fluid viscosity	Glass cleaner	
2 Butoxyethanol	Glycol Ether component of cleaners	Window cleaners	
Sodium bicarbonate	Maintains components	Antacids, detergents	
Modified acrylamide copolymer	Minimizes friction between fluid and pipe	Water treatment/Soil conditioner	
Diethanolamine	Lubricant/Emulsifier	Liquid soaps/Shampoos	
Guar gum	Thickens water, helps suspend sand	Thicken foods and cosmetics	
Acids: Hydrochloric, Boric and Citric	Dissolve minerals & initiate rock fractures		

Hydraulic Fracturing Fluid

- Chemicals vary by company
- Proprietary mixtures
 - Not required to disclose publically.
 - 2010 study showed 632 different chemical products compiled from information from various companies.
- However, some of the oil/gas companies have released lists of their fracturing chemicals.

Methane

- Methane migration
 - From casing failure (~3% fail; 219/6466 wells) (PA DEP Oil and Gas Compliance Report 2013)
 Migration from deep sources
 A8 wells in PA within 2500 ft of drilling show no
 - 48 wells in PA within 2500 ft of drilling show no difference in pre and post drilling [methane] (Center for Rural PA, PA General Assembly. 2011)

Methane

A cause for concern in both air and water
 PA Wells frequently contaminated with methane
 Contaminations known to predate drilling
 ~350,000 wells drilled in PA
 ~100,000 well location is unknown

Toxic Alcohol and Related

All rapidly absorbed GI

All metabolized by alcohol dehydrogenase

All parent compounds/metabolites renal excretion

Toxicology

Metabolites

Ethylene Glycol: Glycolic/Oxalic Acid

Methanol: Formic Acid

Isopropanol: Acetone

Clinical Manifestations

Alcohol	GI	CNS	CV/MSK	Rena 1	Ophthalmol ogic	Metabolic Acidosis
Ethylene Glycol	+	+	+	+ ATN	+ CN palsy	+++
Methanol	+ Pancreati tis	+	-	-	+ 'Blind drunk'	+++
Isopropan ol	+ Bleeding	+++ Most inebriati ng	_	-	-	- Ketosis

Metal Contamination

Largest reason for Toxicology Clinic visits

Mercury

Forms-Occupational Exposures

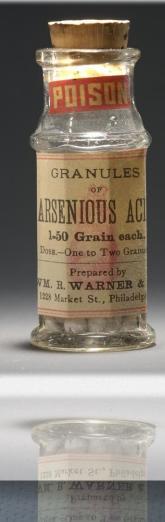
 Elemental (Hg^o, quicksilver)- Dentists, Jewelers, Thermometers

 Inorganic (Hg+, HgCl₂, mercuric chloride)- Explosives, Dye makers, Taxidermists

Organic (methylmercury)- Drug makers, farmers, Embalmers

Mercury

- Clinical Presentation
 - Inorganic
 - Acute
 - Corrosive
 - Renal failure
 - Shock/CV collapse
 - Chronic
 - o Acrodynia
 - Tremor
 - *Erethism*
 - Renal insufficiency


Mercury

- Clinical Presentation
 - Organic
 - Long chain (phenylmercury)
 - Tremor
 - *i* Erethism
 - Renal insufficiency
 - Short chain (methylmercury)
 - O CNS dysfunction
 - Prenatal (Minimata Bay)

Arsenic - Overview

- Arsenic has been reviewed in the medical community for over 2000 years.
 - Hippocrates used arsenic sulfides for topical treatment of ulcers
 - 15-17 century gained fame as a homicidal agent in Europe
 - Potassium arsenite was used to treat fevers in the late 18th century.
 - 19th century-arsenic compounds made up pigments for "Scheele's green."

Toxicity

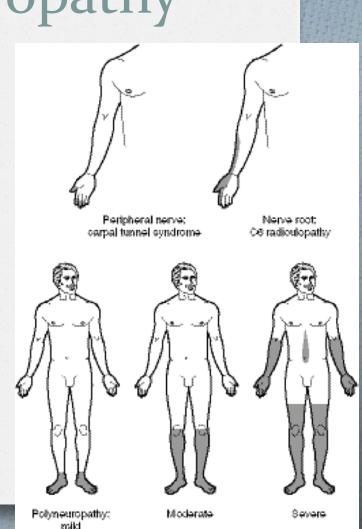
- O Trivalent arsenic
- binds sulfhydryl groups
- inhibits conversion of pyruvate to acetyl CoA
- *inhibits thiolase and glutathione synthetase*
- induces DNA-protien cross linkage
- interferes with microtubule assembly
- Pentavalent arsenate
- *o* mistaken for phosphate
- o uncouples oxidative phosphorylation

Issues with energy production

Chronic Illness

- Has multiple effects on the body
- Associated with
 - Increased fetal loss and premature delivery
 - Liver steatosis, fibrosis and cellular hypertrophy
 - Neurobehavioral changes and memory problems
 - Hearing loss, and neuropathy.
 - CVD, Ischemic HD, and athresclerosis
 - Colicy abdominal pain
 - Chronic Bronchitis
 - OM-II
 - Cancers
 - Skin Lesions (hyperpigmentation), Contact dermititis.
 - Anemia and Agranulocytosis.

Arsenicosis AKA arsenicalism, arseniasis



Blackfoot disease

- Peripheral Vascular disease with associated gangrene.
- Thought to be related to obliterative arterial disease of the lower extremity.

Peripheral neuropathy

- Many times mistaken for Guillain-Barre Syndrome
- Presents with mostly sensory deficit with some muscle weakness in the caudal to rostral pattern.
- Deficit is greater to the sensory than the motor.
- Generally begins weeks after exposure

Cancers

- Trivalent arsenic is used in treatment of refractory APML.
- Arsenic is a Class I IARC substance.
- Positive relationships have been established with the following cancers:
 - Skin: Bowen's disease, Squamous Cell, Basal Cell.
 - Lung: Appears to have a synergistic effect with smoking
 - Urinary tract cancers: Also increased significantly with smoking.

Monitoring for Arsenic Exposure

- Toenails (Mees lines) and hair
- Blood: ICP-MS
- O Urine: AA, AF, ICP-MS
- Speciation is essential for determining disease risk.

Metals in Backflow Water

Many metals are naturally found in backflow water:

- Sodium
- Chloride
- Calcium
- Magnesium
- Strontium
- Ø Barium
- Ø Bromide
- O Etc.

Highest

Lowest

Barium

Common contaminant in drinking water

- Very common in many private wells
- Regions such as Kentucky, Illinois, New Mexico and Pennsylvania have been measured as high as 300mg/Liter.
 - Very common in soil around Marcellus Shale
- Only soluble forms of barium are poisonous (For example, barium sulfate is insoluble)

Barium Levels

- Levels on tested individuals vary greatly
 Generally do not correlate with toxicity
 Not clear how to interpret low-level exposures
 Review of multiple laboratory studies:

 Wide range of levels in tested population
 Many labs report levels greater than 11mcg/liter
 - Normal blood concentrations range from 10mcg/liter to 400mcg/liter seen with no effects

Barium Toxicity

- Severe hypokalemia and kidney injury
- Abdominal pain
- Nausea, vomiting, diarrhea
- Esophageal injury and hemorrhagic gastritis
- Weakness
- Arrhythmias
- Chronic exposures: Kidney injury, numbress, tingling, paralysis, and associated increase in hypertension and cardiovascular disease.

Lead

Occupational exposure

- Welders, painters, construction workers, battery manufacturers, radiator repair
- Exposure is most likely occupational inhalation, although groundwater contamination is possible if drilling pipe contains lead
- Possible hand to mouth exposure for workers using lead threading compounds for the drilling pipe
- Poor occupational hygiene Workers may also bring lead home which can be concern for other home occupants (i.e. children).

Lead Toxicity

- Toxic effects are dose dependent.
- Acute
 - Abdominal pain
 - Ataxia
 - Encephalopathy
 - Seizures
 - Nerve palsy
 - Neurocognitive changes
- Chronic
 - Anemia
 - Neurocognitive deficits
 - Main Concern with low dose environmental exposure
 - Hypertension
 - Renal insufficiency
 - Encephalopathy
 - Peripheral Neuropathy and wrist or foot drop.
 - Reproductive effects
 - Increased rate of spontaneous abortion
 - Reduced birth weight
 - Male infertility

Radioactivity

- Marcellus backflow water is most radiogenic
 Average ~5000 pCi/L
- Soils have high amounts of naturally occurring radioactive metals (NORMs):
 - o Uranium
 - Radon
 - Strontium
 - Cesium

New York Times, Feb 2011

- Radiation contamination in water?
 - High levels of radon, uranium, alpha emitters, and benzene found in the surrounding river waters
 - Mapped the area around 149 wells
 - Claimed link to fracking from waste water treated at sewage plants
- Article was criticized:
 - No baseline levels
 - Possible other contamination from old mines
 - Presented to seem very high, when the calculated exposure was very low

Radiation concerns

- Most concerns of contamination due to storage and transport of water
- Contamination due to leaking liners
 - Ponds are buried after use

Toxicology of Hydraulic Fracturing

#1

Water Toxicity Issues

#2

Air Toxicity Issues

Possible Air Quality Contamination

Hydraulic fracturing

- Diesel particulates at compressor stations
- Hydrogen sulfide exposure
- Methane and other VOC's during drilling
- Leaking storage containers
- Casing production
 - Silica exposure from concrete mixing stations

Ø Backflow water

- VOC's at retention ponds
- Radioactivity at retention ponds

VOCs

Volatile Organic Compounds

- High vapor pressure at room temperature.
- Most frequently encountered VOCs:
 - Methane
 - **Ø** Benzene
 - Methyl Mercaptan
- Exposures largely
 - Backflow water
 - Orilling site

marcellus-shale.us

destal and

PA Dept of Environmental Protection

- 3 testing periods
 - Monitoring for
 - VOC's
 - **O** BTEX
 - Carbon monoxide
 - Nitrogen dioxide
 - Ozone 0

Diesel Particulate Matter

- As many as 20 x 200 or more hp diesel engines running at one time during pumping
- Particulates and gases from engines
 - Aldehydes
 - Nitrogen oxides
 - Carbon monoxide
 - Plus, particulates

Hydrogen Sulfide

Possible exposure

- From gas release while drilling
- Formed in situ by bacterial metabolism in "fracking" tanks, pond sediments, etc.
- Clinically
 - "Knock-Down" agent by binding cytochrome oxidase on electron transport chain
 - Mucous membrane irritant

Exposure concerns

Toxicity may be linked to:

- Chronic lung disease
- Lung cancer?
- Also likely adding to odors noticed by public
- Significant research currently in this area

Silica

Silicon dioxide, silica, quartz

- Creates fine respirable crystalline dusts
- Causes silicosis and lung cancer
- Used on site as proppant and component of cement
 - Remember: ~10% of fracking fluid is sand
- Most workers exposed during sand transfer operations

Respirable Crystalline Silica

Photos courtesy of NIOSH

Silica

- NIOSH (2011) collected 116 air samples from 11 drilling sites

Filtering half-face respirators have max use concentration to 10x NIOSH REL

Silica

How Much Silica Is In NIOSH REL?

- o REL = 0.05 mg/m³
- Average worker inhales 10 m³ air in 1 work day.

Therefore...

✓ 500 micrograms of inhaled silica exceeds REL.

Approx 500 micrograms of silica

Back to case

- You reassure the patient and on follow-up 6 months later barium level is 400 then 135 on repeat. She tells you on this visit she feels "normal."
- She admits she was concerned because she heard there had been spraying at the local waste site about a mile from her house of fracking wastewater for dust control, but that it was recently paved over.

Toxicology of Hydraulic Fracturing

#1

Water Toxicity Issues

#2

Air Toxicity Issues

#3 Stress related illness

Problems with evaluation

- No clear case definition
- No objective laboratory findings
- Most data used to evaluate these exposures are based on occupational exposures
- No data on possible synergistic effects

Future work

Patient Data Base

- Geisenger Health System in Central and Eastern Pennsylvania is creating a data base to monitor patients living in fracking zones.
- Provide large population to track effects longitudinally.

References

- Brikskin, J (2012). "February Update:EPA's Study of Potential Impacts of Hydraulic Fracturing on Drinking Water Rescources: Wastewater Source Appointment Project." <u>www.epa.gov/hfstudy</u>. Accessed 7/20/2012.
- Chapman, EC et al (2012). "Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction." Environ Sci Technol 46:3545-3553.
- DiGuilio, EC et all (2011). Drft: investigation of ground water contamination near Pavillion, Wyoming. EPA 600/R-00/000
- Finkel ML, & Law A (2011). "The Rush to Drill for Natural Gas: A Public Health Cautionary Tale." American J of Public Health 101(5) 784-785.
- Fryzek, J et al (2013) Childhood Cancer Incidence in Pennsylvania Counties in Relation to Living in Counties with Hydraulic Fracturing Sites JOEM 55:7 (796-801)
- Gooddy W, et al (1975). "Spark-Source Mass Spectrometry in the investigation of neurological disease. Brain 98:65-70.
- Metzger, M (2011). Hydrofracking and the Environmetn. Water Quality Products 16(11) 14-15.

References

- McLernon, S (2012). EPA to run test in Wyo Fracking contamination row March 9. www.law360.com .
- Nicot, JP & Scanlon BR. (2012). "Water use for Shale-Gas Production in Texas, U.S." Environ Sci Technol 46:3580-3586.
- Osborn SG et al (2012). "Methane Contamination of Drinking Water accompanying gas-well Drilling and Hydraulic Fracturing." PNAS 108(20) 8172-8176.
- Schmidt, CW Estimating wasewater impacts from fracking. Envir Health Perspect (121.4.pA117).
- Santos JS, Ballestero TP & Pitombeira E (2011) "An analytical Model for Hydraulic Fracturing in Shallow Bedrock Formations." Groundwater 49(3) 415-425.
- Warner NR, et al (2012). "Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania." PNAS 109(30) 11961-11966.
- EPA Hydraulic Fracturing Study Plan (2011) "Impacts of Hydraulic Fracturing on Drinking Water Rescources." EPA/600/R-11/122. November 2011.